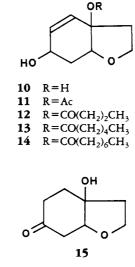
HALLERIDONE, A CYTOTOXIC CONSTITUENT FROM CORNUS CONTROVERSA

CHIKAO NISHINO,* KOJI KOBAYASHI, and MASAKO FUKUSHIMA

Mitsubishi Kasei Institute of Life Sciences, 11 Minamiooya, Machida, Tokyo 194, Japan

In our search for biologically active compounds in Japanese garden plants (1), a cytotoxic compound **1** was isolated from Cornus controversa Hamsley (Cornaceae). Several plants of this family are used in Japan to treat swellings. The spectral data of 1 were identical with those of halleridone (2) and rengyolone (3), which were, respectively, isolated from Halleria lucida (Scrophulariaceae) and Forsythia suspensa (Oleaceae). The isolated compound 1 has a cis ring junction as does halleridone (2) because a Wcoupling (J = 1.5 Hz) was observed between H-4 and H-7a in the ¹H-nmr spectrum. Halleridone [1] was active against P-388 (mouse lymphocytic leukemia) and HeLa (human uterine carcinoma) cells. Derivatives 2-15 of 1 were prepared and tested for cytotoxicity against the above cells by the assay methods of Mirabelli et al. (4) (Table 1).


EXPERIMENTAL

PLANT MATERIAL, EXTRACTION, AND ISO-

 $\begin{array}{c} & & & \\$

LATION.-C. controversa was collected from the garden of our Institute (Machida, Tokyo) in July 1987; a voucher specimen is deposited at the Koishikawa Botanical Garden. The leaves (4.3 kg) of the plant were extracted with MeOH (18 liters) for 1 month at room temperature. The isolation procedure was monitored by cytotoxicity against P-388. The MeOH extract (91 g) was chromatographed using 5 columns (90 cm length \times 6 cm diameter) of Si gel (900 g per column). Each column was eluted with mixtures of C₆H₆-ErOAc (100:0, 60:40, 40:60 and 0:100) which was followed by mixtures of EtOAc-MeOH (95:5, 90:10, 80:20 and 60:40) (2 liters each). Active fractions [EtOAc-MeOH (95:5 and 90:10)] (4.4 g) were chromatographed on Si gel (300 g in column of 60 cm length \times 4 cm diameter) and eluted with EtOAc (30-ml fractions). A pool of active fractions (no. 25-36) (2.7 g) was purified by hplc [column, 250 mm length × 10 mm diameter packed with Develosil 30-3; eluent, EtOAc; flow rate, 3.5 ml/min; uv (252 nm) detection] to give an active compound 1 (963 mg); $[\alpha]^{25}$ D - 1.5° (c = 0.5, MeOH); $m/z [M]^+$ $(C_8H_{10}O_3)$ 154; whose uv, ir, ¹H nmr, ¹³C nmr, and ms were identical with those of halleridone (2) and rengyolone (3).

DERIVATIVES.—Compounds 2–5 (48, 77, 104, and 131 mg, respectively) were made from 1

Compound	IC ₅₀ (µg/ml)		Compound	IC ₅₀ (µg/ml)	
	P-388	HeLa-S ₃	r	P-388	HeLa-S3
1	2.1	2.8	9	0.7	0.9
2	0.5	4.1	10	40.8	>100
3	0.6	2.7	11	>100	>100
4	0.3	1.8	12	>100	8.8
5	0.3	0.8	13	38.5	5.3
6	0.5	1.6	14	8.4	3.5
7	0.4	1.0	15	43.0	>100
8	<0.1	1.2			

TABLE 1. Cytotoxicity of Halleridone [1] and Its Derivatives.

(50 mg) on treatment with $(RCO)_2O$ (R = Me to C_7H_{15}) (100 mg) in pyridine (0.2 ml) (room temperature, 12 h). Compounds 6-9 (25, 29, 32, and 31 mg, respectively) were prepared from 1 (16 mg) with benzoyl, o-, m-, and p-benzoyl chlorides (44 mg each) in pyridine (0.2 ml), respectively (room temperature, 8 h). NaBH₄ (4 mg) reduction of 2-5 (25 mg each) in MeOH (1 ml) (0°, 3 min) gave the corresponding enols (11-14) (24 mg each). On hydrolysis with saturated Ba(OH)₂ in a mixture of H₂O and MeOH (0.5 ml) (room temperature, 2.5 h), 11 (29 mg) gave 10 (18 mg). A mixture of 1 (30 mg) and EtOH (1 ml) was stirred with 10% Pd/C (10 mg) at room temperature for 2 h under H_2 gas to give 15 (28) mg). Derivatives are new compounds, except for 2 (2), and showed expected spectra (uv, ir, ¹H nmr, ¹³C nmr, and ms) that are available upon request to the major author.

LITERATURE CITED

- K. Kobayashi and C. Nishino, Agric. Biol. Chem., 50, 2405 (1986).
- I. Messana, M. Sperandei, G. Multari, C. Galeffi, and G.B. Marini Bettolo, *Phytochemistry*, 23, 2617 (1984).
- K. Endo and H. Hikino, Can. J. Chem., 62, 2011 (1984).
- C.K. Mirabelli, H. Bartus, J.O.L. Bartus, R. Johnson, S.M. Mong, C.P. Sung, and S.T. Crooke, J. Antibiot., 38, 758 (1985).

Received 9 May 1988